If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+20t=15
We move all terms to the left:
4.9t^2+20t-(15)=0
a = 4.9; b = 20; c = -15;
Δ = b2-4ac
Δ = 202-4·4.9·(-15)
Δ = 694
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-\sqrt{694}}{2*4.9}=\frac{-20-\sqrt{694}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+\sqrt{694}}{2*4.9}=\frac{-20+\sqrt{694}}{9.8} $
| -5(3a+5)=20 | | 10-2-9=-45-12x | | -27-7x=-7(8-2x)-6x | | -1x+3=5x+-2 | | 2(4x=7)=2x-4 | | -1x+3=5x+4 | | 2t+24+3t=84 | | v+19/8=3 | | 39+2z=7 | | C=45+24h | | |-5x|+4=11 | | 4(3m+6)=6(2m+4) | | t+13/4=5 | | 30=5(g+22) | | 3=b/4-2 | | 7/12x+1/4=5/6 | | -1x4=5x+4 | | 3x-3=-4x+4 | | 144=800(r)3 | | 59=n/9+51 | | 5x+(-10)=2x+20 | | 63-x=2x*3 | | 89=y/8+81 | | 8x-12=4(.50x-6) | | 89=y8+ 81 | | 8+2f=20 | | 7.12e=1,637.6 | | 3(x+7)=-4(3x-7)+x | | t+-4=-14 | | 16x-8/24=12 | | -1+x/11=-2 | | 2(3x+2)=2(3x-5) |